

巻 頭 日本の資源循環政策とバイオプラスチックをめぐるイノベーションへの期待

特集

自動車電動化に向けた次世代電池用電解質材料の開発事例

海洋生分解性プラスチック開発,評価の最前線

VOC 規制の概要と低減化の取り組み事例

全固体電池の界面不純物制御による容量倍増と 電解質/正極界面における Li 移動解析

河底 秀幸	東北大学大学院理学研究科化学専攻 助教
白澤 徹郎	(国研)産業技術総合研究所 計量標準総合センター 主任研究員
西尾 和記	東京工業大学 物質理工学院 応用化学系 特任助教
清水 亮太	東京工業大学 物質理工学院 応用化学系 准教授
白木將	日本工業大学 基幹工学部 応用化学科 教授
一杉 太郎	東京工業大学 物質理工学院 応用化学系 教授

1 全固体電池への期待と課題

現在,電子デバイスや電気自動車の電源として,高い 安全性・高いエネルギー密度・高速充放電が実現可能な, 全固体電池に大きな注目が集まっている¹⁾。現在の正極 材料の主流は平均電圧が3V台のLiCoO₂やLiFePO₄な どであるが,LiNi_{0.5}Mn_{1.5}O₄やLiCoPO₄などの高電位正 極材料を活用し,平均電圧を5V程度まで上昇させる 試みが活発である。そうした全固体電池の実用化に向け た課題としては,固体電解質のイオン伝導率の向上,固 体電解質と正極材料の界面でのイオン移動の抵抗(界面 抵抗)の低減,電池容量の増大などが挙げられる。固体 電解質については,液体電解質と同程度のイオン伝導率 を実現する超イオン伝導体が開発され^{2.3)},実用化への 機運の高まりに大きく貢献している。

このような背景のもと,著者らは,低い界面抵抗を実 現する材料設計指針の構築を目指している。そして,全 真空プロセスを活用し,電解質/正極界面におけるイン トリンシックな電気化学特性の評価を行ってきた⁴⁾。そ の結果,低い界面抵抗は,不純物を含まない清浄な界面 で実現することが分かり,さらに,14 mA/cm² という 高電流密度(3600C に相当)での超高速充放電を実証 した⁵⁻⁸⁾。

LiNi_{0.5}Mn_{1.5}O₄を正極材料とする全固体電池では、通

常, Li₀Ni_{0.5}Mn_{1.5}O₄ (L₀NMO) と LiNi_{0.5}Mn_{1.5}O₄ (LNMO) の間での充放電動作が用いられる。しかし最近,著者 らは,低い界面抵抗をめざす過程で,正極材料で脱挿 入可能な Li 量を増大できることを見出し,L₀NMO と Li₂Ni_{0.5}Mn_{1.5}O₄ (L₂NMO) の間の充放電動作を用いること で,電池容量の倍増を実現した⁹⁾。また,LNMO を正極 材料とする場合,電解質/正極界面の形成時に,Li が自 発的に移動し,界面近傍に L₂NMO 形成されることも見 出した^{6.9)}。そこで本稿では,清浄な Li₃PO₄/LNMO 界 面を有する全固体薄膜電池における,L₀NMO と L₂NMO の充放電動作を紹介する。さらに,X線回折測定により, 充放電過程と界面形成時における Li 移動を解析した結 果を報告する。

2 全真空プロセスを活用した薄膜電池に おける界面研究

固体電解質と正極材料の界面におけるイントリンシッ クな電気化学特性を評価するためには、界面における接 合面積や結晶構造が規定され、界面は大気曝露などによ る汚染が無く清浄であることが理想的である。こうした 界面では、Liが移動する量や場所を原子スケールで特 定できるため、界面構造とイオン伝導の関係を明らかに できる。著者らは、正極、固体電解質、負極を薄膜とし て積層したモデル電池を作製し、界面制御を基軸とした

特 集 1

全固体電池研究に取り組んでいる⁴⁾。また,理想的な界 面の作製,および電気化学特性の評価には,薄膜作製技 術を活用した真空プロセスが有効である。そこで,電池 の作製から評価までを一度も大気に触れずに行えるよう に,パルスレーザー堆積法・スパッタリング法・真空蒸 着法を備えた成膜室,および電気化学特性評価用マルチ プローバを備えた測定室が超高真空環境(10⁻⁸ Pa台) で接続された実験装置を独自に構築した。これまでに, この実験装置を活用し,LiCoO₂やLNMOなどを正極材 料として用いた全固体薄膜電池において,低い界面抵抗 や超高速充放電を実現した⁵⁻⁸⁾。さらに,放射光X線を 用いた界面構造の解析により,原子が周期的に配列する 界面において,低い界面抵抗が実現することを明らかに した^{7,10)}。また,界面抵抗が結晶方位に依存することも 明らかにした¹⁰⁻¹²⁾。

3 清浄な界面を有する全固体電池での電 池容量の倍増

上述の全真空プロセスを用いて、LNMOを用いた 全固体薄膜電池を作製し、LoNMOとL2NMOの間の 充放電特性を評価した。電池は、Li(負極;600 nm) /Li₃PO₄(固体電解質; 500 nm) / LNMO(正極; 40 nm)の構造として、下部電極 LaNiO3 を堆積させた Nb:SrTiO3基板上に作製した。電池作製後の初期電位 は, 2.3 V (vs. Li/Li⁺) となった。電圧を上げ, 充電を 行うと、サイクリックボルタンメトリー曲線において、 2.9 V (vs. Li/Li⁺) にピークが現れた (図 1(a))。これは, 液体電解質を用いたリチウムイオン電池で報告されて いるように、LoNMOからLoNMOへのLi脱離による酸 化反応に対応する。さらに電圧を上げると、4.0 V (vs. Li/Li⁺)と4.7 V (vs. Li/Li⁺)にもピークが生じ、これ らは、LNMOから LoNMOへの Li 脱離による酸化反応 に対応する。また、電圧を下げる放電過程にも、2.9 V (vs. Li/Li^+), 4.0 V (vs. Li/Li^+), 4.7 V (vs. Li/Li^+) iピークがあり、LoNMOからL2NMOへとLi挿入による 還元反応も確認できた。そして、2回目から50回目ま で、サイクリックボルタンメトリー曲線におけるピーク 位置は、1回目の充放電過程と重なっており、LoNMO と L_oNMO の間での安定した充放電動作が実現している ことを示す。

図1(b)に、サイクリックボルタンメトリー曲線か ら得られた充放電曲線を示す。L₀NMOとLNMOの間 の充放電容量は、2 nAh 程度であったが、L₀NMOと

図1 清浄な界面を有する LiNi₀5Mn₁5O₄ 全固体薄膜電池の(a) サイクリックボルタンメトリー曲線と(b)充放電曲線。 (c) 大気暴露により界面に不純物を混入させた場合のサ イクリックボルタンメトリー曲線 L_2 NMO の間では、4 nAh 程度に倍増し、さらに 50 サ イクル目まで、充放電容量は劣化しなかった。1 回目の クーロン効率は 58 %であったが、サイクル数が増える 度に改善し、30 回目以降ではほとんど 100 %となった。 これらは、2.9 V (vs. Li/Li⁺) と 4.7 V (vs. Li/Li⁺) の 動作電圧を有する、 L_0 NMO と L_2 NMO の間での安定し た充放電動作を定量的に示す。なお、これは、全固体電 池における、 L_0 NMO と L_2 NMO の間での可逆的な酸化 還元反応の初めての報告である。

また驚くべきことに、Li₃PO₄の堆積前に LNMO 表面 を一度大気にさらし、Li₃PO₄/LNMO 界面に不純物を混 入させると、サイクリックボルタンメトリー曲線のピー クは全く観測されず、この L₀NMO と L₂NMO の間での 充放電動作の実現には、清浄な界面の実現が重要と考え らえる(図 1(c))。

さらに、X線回折測定を用い、2.8 V (vs. Li/Li⁺)、 3.5 V (vs. Li/Li⁺), 4.8 V (vs. Li/Li⁺) における全固体 電池内でのLNMOの結晶構造を明らかにした(図2)。 なお,この実験では、特定の電圧状態の電池を大気に曝 し、Li 負極を酸化・失活させた後、X 線回折測定を行った。 2.8 V (vs. Li/Li⁺) の状態では、 $2\theta = 41.3^{\circ}$ において、 L2NMOの回折ピークのみを確認した。Nb:SrTiO3基板 上に作製した LNMO (60 nm) / LaNiO₃ (20 nm) 薄膜 では、L₂NMOの回折ピークは確認できていないことか ら、Li₃PO₄からLNMOへの自発的なLi移動が起こり、 LNMO 全体が L₂NMO に変化したと考えられる。また, LNMOの膜厚依存性も調べた。LNMOの膜厚が 60 nm の場合では、完全にL2NMOに変化したが、LNMOの膜 厚が 300 nm の場合には、LNMO と L₂NMO に由来する 回折ピークを観測した。この結果は、膜厚が厚い場合に は、LNMOの一部がL2NMOに変化することを意味し、 自発的に移動する Li 量は有限であることを示唆する。

膜厚 60 nm の LNMO を含む電池の電圧を上げると, L₂NMO の回折ピークが高角度側に移動した。3.5 V (vs. Li/Li⁺) では, 2 θ = 41.3°のピークが消失し,新たに 2 θ = 44.0° (LNMO) に回折ピークが現れ, L₂NMO が LNMO に変化したことが分かった。さらに 4.8 V (vs. Li/Li⁺) では, 2 θ = 44.0°のピークが消失し, 2 θ = 44.4° (L₀NMO) にピークが現れ, 充電状態に対応す

図2 全固体電池のX線回折パターンにおける,電圧 とLiNi₀₅Mn₁₅O4 膜厚の依存性。なお,L₀NMO, LNMO,L₂NMO は,Li₀Ni₀₅Mn₁₅O₄,LiNi₀₅Mn₁₅O₄, Li₂Ni₀₅Mn₁₅O₄を示す

る L_oNMO に変化したことが分かった。これらの結果は, 低電圧領域で生じる L₂NMO は,高電圧領域では完全に 消失することを示す。また,これらの電圧と結晶構造の 対応関係は,サイクリックボルタンメトリー曲線で確認 された酸化還元反応と整合する結果であり,安定した充 放電動作が,L_oNMO と L₂NMO の間での酸化還元反応 に由来することを示す。

4 自発的な Li 移動により形成される電 解質/正極界面近傍の構造

Li₃PO₄/LNMO 界面における自発的な Li 移動の詳細を 調べるために, Li 負極を含まない薄膜について, X 線 回折測定を行った。実験には, LNMO (60 nm) 薄膜, MgO (100 nm) /Li₃PO₄ (500 nm) / LNMO (60 nm) 薄膜, MgO (100 nm) / Li₃PO₄ (500 nm) 薄膜の 3 つ を用いた。なお, いずれも SrTiO₃ (001)基板上に成膜し, MgO は, Li₃PO₄ の大気劣化を防ぐ保護層である。

特 集 1

図3に、各薄膜のX線回折パターンを示す。LNMO 薄膜では、2 θ = 43.9°, 97.0°に、LNMOの004反 射と008反射に対応する回折ピークを確認した。 MgO /Li₃PO₄/LNMO薄膜では、LNMOの004反射と 008反射に加え、2 θ = 41.5°, 90.3°に、L₂NMOの004 反射と008反射に対応するピークを確認した。また、 ϕ スキャン測定を行ったところ、LNMOとL₂NMOの111 反射が共に、90°間隔の4つのピークを確認した。こ れは、L₂NMO [010] // LNMO [010] // SrTiO₃ [010] の関係で、LNMOに加え、L₂NMOもエピタキシャル成 長していることを示す。L₂NMOよりLNMOの回折ピー

図3 (a) SrTiO₃ (001) 基板上に作製した,LiNi_{0.5}Mn_{1.5}O₄ (60 nm) 薄膜(上),MgO (100 nm)/Li₃PO₄ (500 nm)/ LiNi_{0.5}Mn_{1.5}O₄ (60 nm) 薄膜(中央),MgO (100 nm)/ Li₃PO₄ (500 nm) 薄膜(下)のX線回折パターン。(b) MgO (100 nm)/Li₃PO₄ (500 nm)/LiNi_{0.5}Mn_{1.5}O₄ (60 nm) 薄膜のφスキャン。なお,LNMO,L₂NMO は, LiNi_{0.5}Mn_{1.5}O₄,Li₂Ni_{0.5}Mn_{1.5}O₄ を示す

ク強度が強いことから,LNMO が体積的に多く形成さ れていると考えられる。MgO/Li₃PO₄ 薄膜は回折ピーク を示さなかったため,MgO と Li₃PO₄ はアモルファス状 態にあると考えられる。したがって,L₂NMO エピタキ シャル薄膜は,Li₃PO₄ の堆積後に,Li₃PO₄ からLNMO への自発的な Li 移動により,Li₃PO₄/LNMO 界面近傍に 形成したと考えられる。

さらに、LNMO 内の L₂NMO の空間分布を、放射光 X 線回折を用いた逆格子マップ測定により解析した。 図 4 に、MgO (100 nm) / Li₃PO₄ (500 nm) / LNMO (60 nm) 薄膜における LNMO の 004 反射と L₂NMO の 004 反射の逆格子マップ図を示す。なお、この図 において、 q_x 、 q_y 、 q_z の各軸は、SrTiO₃ 基板の [100]、 [010]、[001] の方向に対応する。各反射のピーク位 置から算出した格子定数は、LNMO では、8.23 ± 0.05 Å、L₂NMO では、8.68 ± 0.07 Å となり、図 2 から得 られた格子定数の値と整合する (LiNi_{0.5}Mn_{1.5}O₄ : 8.224 Å、Li₂Ni_{0.5}Mn_{1.5}O₄ : 8.690 Å)。

 q_xq_z 平面では、 q_z 軸方向に LNMO の膜厚を反映した 振動成分が見られ、自発的な Li 移動による L₂NMO の 形成後も、LNMO は均一な膜構造を維持していること が分かる。また、その膜厚は、35 ± 3 nm と算出でき

図 4 MgO (100 nm) / Li₃PO₄ (500 nm) /LiNi_{0.5}Mn_{1.5}O₄ (60 nm) 薄膜の逆格子マップ図。(a) LiNi_{0.5}Mn_{1.5}O₄ の 004 反射と (b) Li₂Ni_{0.5}Mn_{1.5}O₄ の 004 反射の三次元マップの 等値面。*q* 軸の単位は Å⁻¹である。(c),(d) *q_xq_z* 断面。 なお,LNMO,L₂NMO は,LiNi_{0.5}Mn_{1.5}O₄,Li₂Ni_{0.5}Mn_{1.5}O₄ を示す

る。一方, L₂NMO の膜厚を反映した振動成分は観測で きなかった。そのため, L₂NMO は不均一に形成されて いると考えられる。L₂NMO については 004 反射と 008 反射の半値幅を用いて, 膜厚を算出したところ, 25 ± 3 nm となった。これらの LNMO と L₂NMO の膜厚の和 は, 60 ± 6 nm であり, X 線反射率測定により算出し た, LNMO の元々の膜厚 (60 nm) と整合する。さらに, LNMO と L₂NMO の 004 反射について, q_x 軸と q_y 軸の 方向の半値幅は同程度であり, 水平方向の結晶ドメイン は, 等方的であると考えられる。また, q_z 方向の半値 幅は, LNMO では, 0.37 ± 0.01°, L₂NMO では 0.59 ± 0.01° となった。

また、L₂NMOの被覆率を、004 反射と008 反射の回 折ピークの積分強度から見積もった。ここでは、LNMO と L₂NMO に由来する強度比は、ユニットセルの数の 二乗比に比例すると仮定した。見積もった被覆率は、 0.53 ± 0.05 となった。以上の結果をもとに、L₂NMO の模式的な構造を図 5 (a) に示す。LNMO 表面の約半 分が、L₂NMO で覆われている。残りの半分について は、明確な回折反射が確認できなったことから、アモル ファス状態であると考えられる。なお、X 線回折測定で は、LNMO と L₂NMO のどちらが Li₃PO₄ と接している かは分からないが、Li は Li₃PO₄ から移動しているので、 L2NMO が Li3PO4 に接していると考えられる。

Li₂PO₄からLNMOへの自発的なLi移動は、Li₂PO₄ と LNMO の化学ポテンシャルの差に由来すると考えら れる。すなわち、Liの化学ポテンシャルはLi₃PO₄層の 方が高く、Li₃PO₄からLNMOへの自発的なLi移動が起 こったと考えらえる。今回,化学量論組成のLi₃PO₄を 成膜ターゲットとして使用したため、自発的な Li 移動 により、Li₃PO₄内にLi空乏領域が存在すると考えられ る。また、不純物を含まない清浄な Li₃PO₄/LNMO 界面 では、Li移動についての障壁が低いと予想されるため、 初期状態に自発的な Li 移動が起こり, その後, スムー ズなLi 脱挿入、すなわち、LoNMOとLoNMOの間の安 定した充放電動作を実現したと考えられる(図 5(b-d))。 また、初期状態における Li₃PO₄/LNMO 界面近傍におけ る L₂NMO の形成は、L₀NMO と L₂NMO の間の充放電動 作には、大きな影響を与えていない。また、サイクリッ クボルタンメトリー曲線におけるピーク幅は, LNMO 薄膜を用いたこれまでの報告と同程度であり¹³⁾.アモ ルファス状態の領域も LoNMO と LoNMO の間での安定 した充放電動作には、大きな影響を与えていないと考え られる。

図5 LiNi_{0.5}Mn_{1.5}O₄ 全固体電池における界面形成過程と充放電動作の概略図。(a)界面形成直後の様子。LiNi_{0.5}Mn_{1.5}O₄ エピタキシャル 薄膜の作製後,その上に固体電解質 Li₃PO₄ を堆積した状態。(b) – (d) 充放電動作中の薄膜構造。(b) はリチウム電極を蒸着 した電池作製の直後の様子。(c) は充放電動作中の電池の状態,(d) は充電状態を示す。なお,L₀NMO,LNMO,L₂NMO は, Li₀Ni_{0.5}Mn_{1.5}O₄,LiNi_{0.5}Mn_{1.5}O₄,Li₂Ni_{0.5}Mn_{1.5}O₄ を示す

5 結言

不純物を含まない清浄な Li₂PO₄/LNMO 界面を形成す ると、LoNMO と L2NMO の間で安定した充放電ができ ることが分かった。この電池は 2.9 V (vs. Li/Li⁺)と 4.7 V(vs. Li/Li⁺)で動作し、その容量は従来の LNMO 正 極材料を用いた電池と比較して、倍増した。また、自発 的な Li 移動により、初期状態では界面近傍に L2NMO が 形成されるが、このL2NMOは、充放電動作中に LNMO や LoNMO へと可逆的に変化した。さらに、自発的な Li 移動は、Li₃PO₄からLNMOと起こり、島状のL₂NMO 層を含む、不均一な構造をLi₃PO₄/LNMO界面に形成す ることが分かった。今回, LNMO を正極材料とする全 固体電池における電池容量の倍増が実現したことによ り、清浄な電解質/電極界面の新たな役割が浮き彫りと なった。これまで清浄な界面により実現してきた低界面 抵抗や高速充放電に加え、電池容量の倍増は全固体電池 の応用範囲の拡大につながり、実用化を目指す上で、大 きな一歩となると考えられる。

謝辞

本研究は、トヨタ自動車株式会社、新エネルギー・産 業技術総合開発機構(NEDO)、科学技術振興機構(JST) 戦略的創造研究推進事業(CREST)、日本学術振興会 (JSPS)科研費の支援を受けて行われた。この場を借りて、 深く感謝を申し上げたい。

参考文献

- 1) M. Armand and J. M. Tarascon, Nature 451, 652 (2008) など
- N. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, R. Kanno, M. Yonemura, T. Kamiyama, Y. Kato, S. Hama, S. K. Kawamoto, and A. Mitsui, *Nat. Mater.* 10, 682 (2011)
- Y. Kato, S. Hori, T. Saito, K. Suzuki, M. Hirayama, A. Mitsui, M. Yonemura, H. Iba, and R. Kanno, *Nat. Energy* 1, 16030 (2016)
- M. Haruta, S. Shiraki, T. Ohsawa, T. Suzuki, A. Kumatani, Y. Takagi, R. Shimizu, and T. Hitosugi, *Solid State Ionics* 285, 118 (2016)
- M. Haruta, S. Shiraki, T. Suzuki, A. Kumatani, T. Ohsawa, Y. Takagi, R. Shimizu, and T. Hitosugi, *Nano Lett.* 15, 1498 (2015)

自動車電動化に向けた次世代電池用電解質材料の開発事例

- H. Kawasoko, S. Shiraki, T. Suzuki, R. Shimizu, and T. Hitosugi, ACS Appl. Mater. Interfaces 10, 27498 (2018)
- S. Shiraki, T. Shirasawa, T. Suzuki, H. Kawasoko, R. Shimizu, and T. Hitosugi, ACS Appl. Mater. Interfaces, 10, 41732 (2018)
- K. Nishio, N. Nakamura, K. Horiba, M. Kitamura, H. Kumigashira, R. Shimizu, and T. Hitosugi, *Appl. Phys. Lett.* 116, 053901 (2020)
- H. Kawasoko, T. Shirasawa, K. Nishio, R. Shimizu, S. Shiraki, and T. Hitosugi, ACS Appl. Mater. Interfaces 13, 5861 (2021)
- H. Kawasoko, T, Shirasawa, S. Shiraki, T. Suzuki, S. Kobayashi,
 K. Nishio, R. Shimizu, and T. Hitosugi, ACS Appl. Energy Mater. 3, 1358 (2020)
- K. Nishio, N. Nakamura, K. Horiba, M. Kitamura, H. Kumigashira, R. Shimizu, and T. Hitosugi, ACS Appl. Energy Mater. 3, 6416 (2020)
- D. Imazeki, C. C. van Gils, K. Nishio, R. Shimizu, and T. Hitosugi, ACS Appl. Energy Mater. 3, 8338 (2020)
- S. Lee, H. Kim, J.-H. Lee, B.-K. Kim, H. Shin, J. Kim, and S. Park, Nano Energy 79, 105480 (2021)

バイオマス粉体を複合化した 海洋生分解性プラスチック

三宅 仁 アイ-コンポロジー(株)代表取締役

1 はじめに

2020年10月菅首相が所信表明演説で、「2050年ま でに日本は温暖化ガスを実質ゼロにする」と宣言した。 これに先立つこと8年、2012年ヨーロッパ委員会EC では、「2050年CO₂排出ゼロを目標に「バイオエコノ ミー社会」実現のため各国に開発指令」を出していた。 2015年のパリ協定の温暖化防止もこの流れのひとつで ある。日本も欧州に遅れること8年で世界の温暖化ガ ス排出目標に追いついたことになる。

海に目を転じると、世界中で海洋プラスチックごみ問 題やマイクロプラスチックへの懸念が大きく取り上げら れるようになった。しかも海中や海底には目に晒されな い大量のプラごみが堆積され、これらは 500 年以上残っ てしまうという。

プラスチックはこの 60 年間で私達の暮らしになくて はならないものになったが、焼却すれば CO₂ を大量に 発生し、海では汚染の元凶となり悪物のレッテルを貼ら れてしまうことは残念でならない。

この大気と海の環境課題を打開するひとつの方策とし てバイオマスポリマーと生分解性ポリマーがある。しか しこの両方において多くの誤解もあることも事実である ことから,筆者なりの意見を交えた総論の解説と新開発 の海洋生分解性バイオマス複合プラスチックについて述 べる。

2 バイオプラスチックの世界の動き

2.1 生産量と内訳

図1に世界のバイオマスプラと生分解性プラの生産能 カの円グラフを、図2に日本のバイオマスプラと生分解 性プラの出荷量推計の円グラフを示す(環境省資料、日 本バイオプラスチック協会まとめ、2019年)。世界の 生産量は211万トン、対して日本の出荷量は4.7万ト ンで世界のわずか2.2%にすぎない。また生分解性プラ に目を転じると、世界の生分解性プラの生産量は117 万トン(生産量全体の55%)、対して日本の出荷量はわ ずか430トン(出荷量全体の9%)であり圧倒的に少 ないのである。さらにほぼ全てが日本国内の製造ではな く輸入である。このシャビーな数字が日本の環境調和プ ラスチックの現状であり、逆を言うとこの分野の材料は 今後成長が期待できるとも言える。

バイオマスプラの種類として,バイオ PET・バイオ PA・バイオ PE の生産・出荷が多いのは共通しているが, 欧米ではグローバル企業のコカコーラ,ネスレ,ダノン などでは既に100%バイオ由来のPET ボトルの開発が 進み(日本で使用されているバイオ PET のバイオ由来 度は20~30%),ブランドメーカーほど環境意識が高 い。また中国では既にバイオマスポリマーや生分解性ポ リマーの生産が始まっている。日本ではこの1・2年で やっと SDGs が根付こうとしている段階であり,周回遅 れ環境後進国と言われる所以である。