** **FINE CERAMICS REPORT**

2011 夏号

Vol.29 No.3

第25回テクノフェスタ

LiCoO。エピタキシャル薄膜の成膜と物性評価

東北大学 一杉 太郎, 白木 将,大澤 健男,熊谷 明哉. トヨタ自動車株式会社 大木 栄幹

1. はじめに

化石燃料依存からの脱却が緊急の課題であり, 原子力 発電のあり方も含めた社会像に関する議論が沸騰してい る. その中でも、2次電池をコアデバイスとする社会の 構築は極めて重要な現実解であり、電池の出力およびエ ネルギー密度の更なる向上が必要不可欠となっている.

技術開発における1つのターゲットは全固体電池(全 てが固体で構成されている電池)であり、その実現には、 電極材料(活物質)の材料開発が鍵を握っている.特に, 高イオン伝導性、高電子伝導性を有する物質が開発でき れば、高容量・高出力電池が可能となる. そのためには、 材料物性の基礎に立ちかえり、電池動作の原理・原則を 理解した上で材料開発を行うことが肝要である. 我々の 研究グループでは実験と計算を用いて基本原理を解明し, それを反映させた材料創出を狙っている.

本研究では携帯電話・ノートパソコンなどに搭載され るLiイオン電池の材料として広く応用されている LiCoO₂の物性に着目した.この材料の多結晶体での電 池特性評価に関しては豊富な研究報告が存在するが、粒 界の影響を排除した状態での物性研究は少なく, エピタ キシャル薄膜成長が可能となればそのような研究が可能 となり、新電極材料設計指針の構築が期待できる。また、 異種エピタキシャル薄膜を組み合せた理想的な電解質/ 電極界面に関する研究や、結晶構造制御による Li イオ ン伝導性向上への展開も考えられる. そこで本研究では, 様々な基板上にLiCoO。のエピタキシャル成長を試み1, 結晶性や配向性制御を行った. さらに, Li 量を調整し, 薄膜の電気伝導特性の評価を行った. 本稿では、主にエ ピタキシャル薄膜成長について報告する.

2. LiCoO₂の特徴

α-NaFeO₂型 LiCoO₂ (Rhombohedral 構造)は携帯電

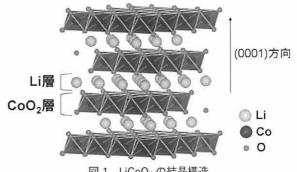


図1 LiCoO2の結晶構造

話やノートパソコンなどに搭載されるLiイオン電池の 陽極材料として広く応用されている. 三角格子状に Co が並んだ CoO2 層間に Li イオンが配置した層状構造を とり(図1), 異方性の大きい結晶構造である. 大型単結 晶の成長が難しいため、エピタキシャル成長が可能にな れば、物性の異方性評価や、基板からのストレスと電池 特性の相関等に関する研究が可能になる. しかし, 平坦 な LiCoO₂ エピタキシャル薄膜作製に関する報告はこれ まで無かった.

3. 実験方法

本研究ではパルスレーザー蒸着法(PLD法)を用いて エピタキシャル薄膜作製を行った.酸素分圧を 1×10⁻³ Torr に保ち, 基板温度を室温, そして200~650℃の範 囲で成膜を行った. ターゲットは Li_{1.2}CoO₂ を使い, Li の蒸気圧の高さに起因する膜中の Li イオン欠乏を防ぐ ため、Li 過剰組成とした、X線回折(XRD)により薄膜 結晶性の評価を、そして、AFMにより膜の表面状態を 評価した. また, Raman 分光, 透過電子顕微鏡観察に より薄膜評価を行った.

4. 結果と考察

成膜条件の最適を行った結果,基板温度250~300℃

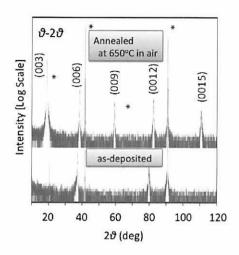


図 2 (上段) $LiCoO_2$ エピタキシャル薄膜の X 線回折パターン, (下段)室温で堆積した直後の薄膜の回折パターン(アニールにより $LiCoO_2$ (003) と(009)のビークが現れる. *は基板のビークを示す)

において $LiCoO_2$ 単相エピタキシャル薄膜が得られた. それより高い温度では Co_3O_4 などの不純物が生成した.

基板温度を室温で蒸着した試料は、Li 原子と Co 原子がランダムに配置した薄膜になっていることがわかった。そこで、200~700℃で大気アニールを行ったところ、300℃で α -NaFeO2型 LiCoO2が生成しはじめ、それ以上の温度でアニールした試料では LiCoO2のピークのみ XRD で検出された。アニール温度が高くなるにつれ薄膜結晶性は改善し、650℃付近で最も結晶性が高くなった。アニール前後の薄膜の XRD パターンから、エピタキシャル成長が確認でき(図 2)、ロッキングカーブ半値幅0.6°程度の薄膜が得られた。

さらに、Pt(111), Pt(100), Au(111), Au(100)へのエピタキシャル成長を試みたところ、 $Al_2O_3(0001)$ 基板上と同様に、 $LiCoO_2(001)$ 薄膜が成長することが明らかになった。しかし、Pt(110)上には、 $LiCoO_2(100)$ あるいは、 $LiCoO_2(104)$ が成長する場合があり、基板表面状態に薄膜成長方位が非常に敏感であることがわかった。金属基板上のエピタキシャル薄膜について、電池特性を測定したところ、良好に動作することを確認した。

次に原子間力顕微鏡 (AFM)により表面平坦性を評価したところ, Al_2O_3 基板のステップとテラスが観察されるような平坦性を有していた $(\ensuremath{f Z}\ensuremath{f 3})$. しかし,Raman分光からはごく微量の Co_3O_4 の存在が確認されている。このような試料について, $K_2S_2O_8$ 水溶液を用いて薄膜内のLi 量を調整し,電気輸送特性評価を行っている.特に,Li イオンと電子を切り分けて評価し,高伝導度実現への指針を得ることを目指している.

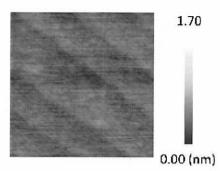


図3 LiCoO₂ エピタキシャル薄膜の AFM 像(右上から 左下にかけて、ステップとテラス構造が観察されて いる)

5. まとめ

 $Al_2O_3(001)$ や Pt, Au 基板上において、 $LiCoO_2$ エピタキシャル薄膜を得ることに成功した。今後、電気輸送特性や磁気特性と Li イオン伝導性の相関を明らかにしていく予定である。また、ヘテロ構造の作製などへの展開が期待される。そのような研究から新規電極材料の材料設計指針を構築していく。

参考文献

1) Tsuruhama, Hitosugi et al. : *Appl. Phys. Express*, 2, p085502 (2009)

〈著者紹介〉

一杉 太郎(ひとすぎ たろう),白木 将(しらき すすむ),大澤 健男(おおさわ たけお),熊谷 明哉(くまたに あきちか)東北大学 原子分子材料科学高等研究機構【〒980-8577 宮城県仙台市青葉区片平 2-1-1

☎(022)217-5944】

大木 栄幹(おおき ひでき) トヨタ自動車株式会社

一杉 太郎

____ 白木 将

澤 健男

熊谷 明哉

大木 栄幹